

IMPACT: A Parallel Beam Dynamics Code with Space Charge

Robert D. Ryne Lawrence Berkeley National Laboratory

ICFA Beam Dynamics Workshop on Space-Charge Simulation Trinity College, Oxford April 2-4, 2003

Work performed under the auspices of the DOE SciDAC project, "Advanced Computing for 21st Century Accelerator Science and Technology" using resources of the National Energy Research Scientific Computing Center

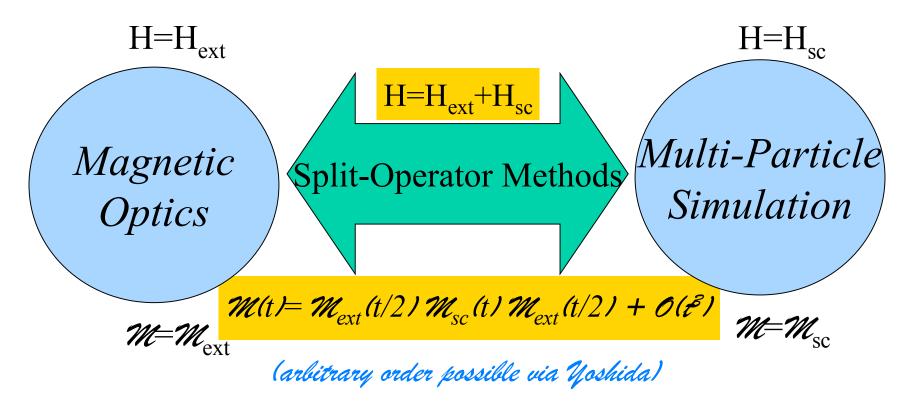
Performed in Collaboration with

- J. Qiang, LBNL
- **Viktor Decyk, UCLA**
- Salman Habib, LANL

IMPACT: Integrated-Map and Particle Accelerator Tracking Code

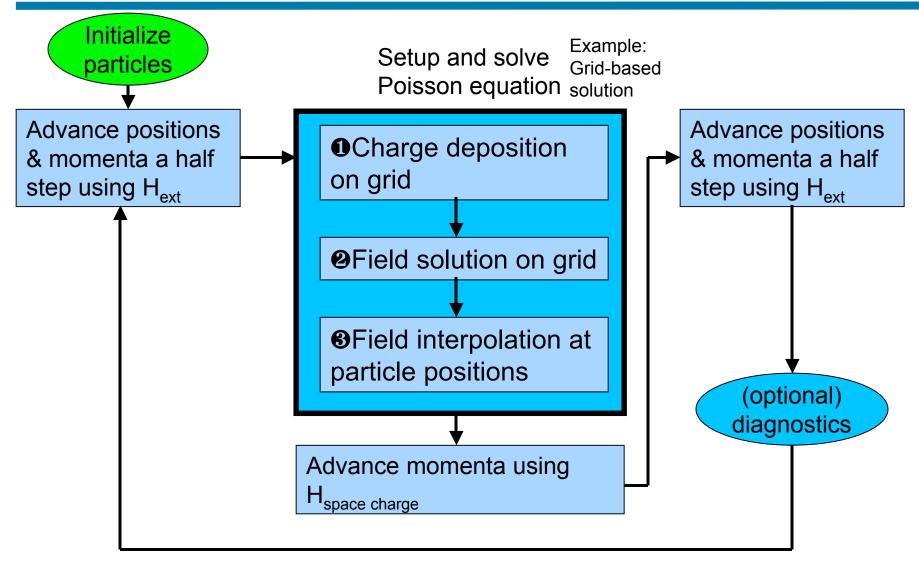
- Originally developed to model beam dynamics with space charge in linacs
- One goal: develop improved model of beam dynamics in rf cavities; done by treating rf cavities w/ same map-based techniques used to model other z-dependent elements (e.g. quads w/ fringe fields)
 - Obtain single particle Hamiltonian H_{ext}, then numerically integrate linear equations for linear map: dM/dT=JSM
 - ✓ Requires knowledge of E(z) on axis and dE/dz
 - Note well: must also integrate equations for the design trajectory

IMPACT computes reference trajectory and maps around that trajectory "on the fly"


- Key elements of IMPACT are:
 - Map-generation capabilities
 - 3D parallel Poisson solvers
 - Particle manager to reduce communication and obtain high performance

Split-Operator Approach

Philosophy:


- Do not take tiny steps to push ~ 100 million particles
- Do take tiny steps to compute maps; then push particles with maps

Particle-In-Cell (PIC) Simulation

Present Status of IMPACT

- Since late 1990s has been developed and maintained by Ji Qiang. Many enhancements:
- Two particle-advance algorithms:
 - Linear map based on H
 - Nonlinear Lorentz force integrator (using z/t as independent variable)
- External beamline elements:
 - Quad, dipole, rf cavity, solenoid+rf cavity, 3D constant focusing
 - DTL, CCDTL, CCL, SC cavity, user-defined element
- 3D space charge with 6 types of boundary conditions
- For error studies: gradient, misalignment, rotation errors
- Restart function and dynamic load balance
- Code suite: 3D envelope code, design code, IMPACT
- Used to study many problems: SNS linac, CERN SPL, LEDA, JHF linac, space-charge driven resonances,...

Future Directions

- New Poisson solvers for beams with large aspect ratios
- Beam dynamics in rings
 - IMPACT space-charge routines and rf cavity model embedded in MaryLie ("MaryLie/IMPACT")
 - ✓ Nonlinear symplectic maps for beamline elements
 - Nonlinear symplectic and nonsymplectic tracking
 - Fitting and optimization
- Modeling high-brightness electron beams
- Multiple species
- Multiple reference particles to handle situations where the motion is too nonlinear to be represented by just one reference particle

